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In the last years, the study of quantum Hall effect (QHE) has known a consistent expansion. Later, the theory has been 
extended to a non-commutative background on which the quantum Hall fluid evolves and a matrix model was proposed for 
describing the electrons moving in the lowest Landau level of the magnetic field. Almost immediately, topics like the non-
commutative QHE, or QHE in higher dimensions, in the context of classical and quantum branes or of string theories, have 
become main objectives of investigations. In a recent series of papers, for the first quantization level, were studied planary 
dynamics of a charged scalar evolving in static orthogonal magnetic and electric fields. For a complete discussion, we 
succeed in building an entire software package in order to reach the solutions for the Euler-Lagrange coupled field 
equations, in a first-order perturbative approach. Working in a relativistic draw near, for exemplification, we consider two 
particular cases in order to underlining the reliability of our software tool. For the second case, in our analysis, we employ 
the Lagrangian due to Nielsen and Olesen well-known as leading, in (2+1)-dimensions, to an infinite discrete set of soliton 
solutions. After deriving, in static cylindrical coordinates, the Euler-Lagrange coupled field equations, we succeed in 
obtaining generalized solutions of the sourceless system of equations in a first-order perturbative approach. For particular 
cases the obtained solutions, fit the results from the literature. 
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1. Introduction 
 
In the last years, it has been stated that the Chern – 

Simons theories provide a reliable support for the study of 
the quantum Hall effect (QHE) [1]. Soon after, the theory 
has been extended to a non-commutative background on 
which the quantum Hall fluid evolves [2] and a matrix 
model was projected for describing the electrons moving 
in the lowest Landau level of the magnetic field [3]. Soon, 
topics like the non-commutative QHE [4], or QHE in 
higher dimensions, in the context of classical and quantum 
branes or of string theories [5], have become main targets 
of researches. 

Recently, working in a non-relativistic Chern–Simons 
theory, defined on a background whose coordinates 
commute, the electrons have been identified with vortices. 
Using the relationship among the vortices dynamics and 
the Maxwell and Chern–Simons theories [6] as well as 
their D-brane comprehension in a type IIB string theory 
[7], it has been shown that the vortices may form a 
quantum Hall fluid whose low-energy dynamics is 
controlled by the matrix model [8]. 

 On the other hand, concepts developed in particle 
physics, as the spontaneously broken gauge symmetry and 
macroscopic occupation of quantum levels, have been 
intensively used in explaining the Meissner effect or the 
flux quantization in the Josephson and integer quantum 
Hall effects [9,10]. Furthermore, in astrophysics, the Hall 
effect has been considered as involved in the magnetic 
field evolution in neutron star shells [11] or in the star 

formation [12]. Recently, methods developed in particle 
physics have been intensively engaged in explaining the 
extraordinary accuracy of the basic physical laws ruling 
the behavior of the macroscopic systems, since they 
provide a surprisingly simple theoretical basis which can 
be experimentally verified to a elevated degree of 
precision [1]. In this respect, the so called topological 
‘‘defects’’ which can generate a primordial magnetic field 
or an exotic quantum phenomena, have been employed in 
a wide range of theories. The simplest models that give 
rise to domain walls, gauge strings, magnetic monopoles 
and textures are based of Lagrangians of real or complex 
scalar fields, with a spontaneously broken symmetry [2]. 
On the other hand, a wide area of intensive research in 
mesoscopic physics has been recently developed, by 
considering the fundamental implications of quantum 
mechanics in two-dimensional samples [3]. Since the 
planary dynamics of charged particles evolving in static 
orthogonal magnetic and electric fields is of real interest—
especially after it has been seen that electrons confined in 
two dimensions exhibit the remarkable phenomena of 
quantum Hall effect, a specialised software tool is 
welcome. It should offer a good opportunity to continue 
the research work, covering the huge volume of 
computations. In this way, basing on our previous works 
where we got, within a relativistic approach, the quantum 
eigenstates and the energy spectrum, as a non-linear 
dependence on the exterior fields and the particle 
momentum parameter, [4], we succeed in building an 
entire software package in order to reach the solutions for 
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the Euler-Lagrange coupled field equations, in a first-order 
perturbative approach.  

As an example, working in a relativistic draw near, for 
exemplification, were evaluated the quantum eigenstates 
and the energy spectrum. In the particular case of the 
Lagrangian due to Nielsen and Olesen, in static cilindric 
coordinates, was recovered the non-linear dependence of 
the energy-eigenvalues on the magneto-electric fields and 
we succeed in getting a more general expression for the 
gauge fields’ solutions. The used platforms are MAPLE 
and MATLAB with symbolic and differential equations 
libraries. 

 
 
2. Review of the software procedure sets 
 
Lastly, in literature, in the last period of time, a series 

of successful symbolic computation or numerical 
approaches were proposed [8-13]. Such theoretical and 
multidisciplinary studies are important and have high 
applicability skills [8, 12, 13]. On the other hand, the main 
advantage comes from the real possibility of covering the 
necessary huge volumes of computations.  

  
 

 
 

Fig.1. Modular structure of a dedicated software package 
 
 
The contemporary needs and the complexity of the 

studied systems, lead to a structured and Object Oriented 
Programming approaching, in order to succeed enveloping 
the entire system’ complexity. On the other hand, many 
software tools should not respond only to one particular 
problem. The current tendency is to design and use reliable 
software programs which should be able to respond to an 
entire series of requests. In this order, in our days, mainly 
are used complete software packages, which could cover 
all these requests. A software package is used in object-
oriented programming to name a group of related classes 
of a program. Packages are useful to measure and control 
the inherent coupling of a program.  

In a modular program, even outside object-oriented 
programming, a software package may refer to any 
component (module) that can be integrated into the main 
program. Typically this is done by the end user in a well-
defined interface. A block structure of our developed 
application is shown in the picture below. 

The first unit includes the definition procedures. It 
allows to describe the Lagrangian structures and to set up 
the coordinates’ set. 

In the subsequent parts, are involved fourth order 
recursive procedures in order to transform the considered 
Lagrangian structures into a convertible form due to allow 
the writing down the Euler Lagrange equations. In the 
same manner are involved specific procedures in order to 
succeed in solving these equation using the first-order 
perturbation theory.  

 
 

3. Results and discussion 
 
Let us start with the U(1)-gauge invariant Lagrangian 

for the charged scalar field [6,7,13], 
 

( ) ( ) µν
µνµµ FFmDD

4
1*2

0
* −ΦΦ−ΦΦ−=L     (1) 

 
where µD  represents the U(1)-gauge covariant derivative, 
i.e.  

       µµµ ieAD −∂=         (2) 
 

while µνF  is the Maxwell electromagnetic tensor.  
The corresponding Euler–Lagrange scalar field 

equation  
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In order to succeed in building a complete comparison 
with the previous achieved results from the literature [5, 6, 
7, 13], we should include the supplementary Assatz 
conditions,  
 

  0== zx AA         (5) 
   xBAy 0=         (6) 
    xEV 0=          (7) 

 
where 0E and 0B  are the orthogonal electric and magnetic 
fields. 

The explicit form of the scalar field equation becomes 
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and its h.c., where ijµ  is the Minkowski metric tensor, i.e. 
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Using the Compton recalibration, 
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the field equation (8) becomes 
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or, in an more compact form, could be written as 
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and its h.c. 
These equations admit variables separation (1,13) and 
performing it by considering 
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we arrive at the expression (11) at the form 
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where we consider the definitions 
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This equation is a second order rank with linear 
symmetries (found with integrated odeadvisor help), and, 
considering the substitutes 
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expression (13) becomes 
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which could be written in a more simple form, by 
employing the variable change 
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which brings the field equation (16) at the standard form 
[1, 2, 5, 13] as  
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where we used the definition 
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The general solution for this equation could be written 

as 
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where WM and WV are the WhittakerM and respectively 
WhittakerV functions [14].  
 

 
 

Fig.2. The general solution of the scalar field’ equation (19). 
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This solution is more general as the previous one [13, 
15]. We could recover the anterior results if the relation 
(19) is expressed in terms of the Hermite associated 
functions as for the first term of this expression, in the 
nearby origin domain: 
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By imposing the well known condition as the model 
parameters must satisfy the quantization relation 
 

    ( ) Nnnp ∈+=+ 322 12 βδβ         (20) 
 

we come to an overall non-linear dependence of the 
energy-eigenvalues, nω , on the magneto-electric fields, 
contained in Ω  and α and on the particle momentum 
parameterκ . 

By considering 0E  to be the Hall electric field, we 
notice that the electromagnetic current, whose only non-
vanishing component is [13,15] 
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exhibits the quantization, due to the magnetic field 
involved in the Landau split of the stationary states.  

In the second case, we made an approach for a more 
complex case, described by a Nielsen-Olesen Lagrangian 
density of the form 
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where µD  represents the U(1)-gauge covariant derivative 
as above (2), µνF  is the corresponding Maxwell tensor, 
defined as  
 

    νµµνµννµµν ;; AAAAF −=∇−∇=      (23) 
 

and ( ) µµ ;*=∇  stands for the Levi–Civita convariant 
derivative (as we are going to use cylindrical coordinates).  

The system of Euler–Lagrange equations, namely  
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in the static case and for ( r , θ )-depending fields, 
explicitly becomes 
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respectively 
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where the pseudo-orthonormal tetrad has been expressed 
in cylindrical coordinates as 
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In the same time, it has to be imposed  the Coulomb 
condition 
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The equations’ solving approach is made, as in the 

previous case, by considering the usual modal field 
decomposition of the form 

  ( ) θinerf=Φ                       (32) 
 
and 

    ( ) )(θgrvAr =                         (33) 
and respectively 
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In this way, considered the Coulomb necessary condition, 
we arrive at the following relations [13, 15] 
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The radial component of the gauging field (29) 
becomes 
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Since the obtained system of coupled field equations 

had been required a detailed and complex numerical 
analysis, in a previous paper, it was delayed for the aim of 
a future investigation, in the end of this section we shall 
focus on a particular solutions of this fields’ system. 

Considering the first order approximation, the scalar 
field equation’ solution admits the form 
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where we use the definition  
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This expression generalizes the previous results from the 
literature [14,15]. Considering the particular case for the 
solution written with the Bessel functions [13] 
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which is satisfied by the Bessel functions Jn(lr) [7], so that 
the full n-mode solution reads 
 

  ( ) θµ in
nn erJr =Φ )(          (41) 

 
we arrive at the general solutions in a mode-by-mode 
expansion read [15, 19] 
 

   
( ) θθ innn

r er
r

nC
r

r
nC

rA ⎥
⎦

⎤
⎢
⎣

⎡
+= −)(

),( 21          (42) 

 
( ) θ

θ θ innn er
r

nC
r

r
nC

irA ⎥
⎦

⎤
⎢
⎣

⎡
−= −)(

),( 21          (43) 

 
where the complex spectral amplitudes 1C , 2C  should 
satisfy the so-called reality condition for the vector 
potential components, i.e. 
 

             ( ) ( )nCnC 21 =−                         (44) 
 

With these solutions could be computed the source current 
),( θrj  from Klein Gordon equation (27) and the zB  

nontrivial component component of the magnetic field. 
 
 

 
 

Fig.3. ),( θrj in unit of 0/ me for 1=α   
 

Thence, the AB
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This expression generalizes the previous results from 

literature [14,19]. 
 

 
4. Conclusions 
 
In the present paper, is presented a coherent computer 

approaching strategy [17, 18] due to succeed in building, 
writing down and solving in the first orders of 
approximation, the Euler-Lagrange coupled field 
equations. Such computer software programs are, in the 
present day, very important tools for simulations and 
theoretical estimations. Working in a relativistic draw 
near, for exemplification, we consider two particular cases 
in order to underlining the reliability of our software tool. 
After deriving the Euler-Lagrange coupled field equations, 
we succeed in obtaining generalized solutions of the 
sourceless system equations in a first-order perturbative 
approach. All these will also help in future studies devoted 
to the quantized planary dynamics of charged bosons. 
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